@article{oai:nagasaki-u.repo.nii.ac.jp:00027530, author = {Nagao, Kenta and Hayashida, Masamitsu and Ohgai, Takeshi}, issue = {7}, journal = {Materials Research Express}, month = {Jul}, note = {Effect of Co–Ni alloy composition on the current perpendicular-to-plane giant magnetoresistance (CPP-GMR) response of electrochemically synthesized Co–Ni/Cu multilayered nanocylinders was studied using anodized aluminum oxide membranes (AAOM) with nanochannel diameterD∼67 nm and length L∼70 μm. Co–Ni/Cu multilayered nanocylinders, which have an aspect ratio L/Dof ∼1,045, were fabricated in theAAOMnanochannel templates by utilizing a pulse-current electrochemical growth process in an electrolytic bath with Co2+,Ni2+ and Cu2+ ions. Co–Ni/Cu alternating structure with Co84Ni16 alloy layer-thickness of 9.6 nmand Cu layer-thickness of 3.8 nm was clearly observed in a nanocylinder with a diameter of 63 nm. The alternating structure was composed from crystalline layers with preferential orientations in hcp-CoNi (002) and fcc-Cu (111). The Co–Ni/Cu multilayered nanocylinders were easily magnetized in the long axis direction because of the extremely large aspect ratio L/D. InCo84Ni16/Cu multilayered nanocylinders, the coercivity and squareness were∼0.46 kOe and∼0.5, respectively. The CPP-GMR value was achieved up to 22.5% (at room temperature) in Co84Ni16/Cu multilayered nanocylinders., Materials Research Express, 9 (7), art. no. 075007; 2022}, title = {Effect of Ni addition on CPP-GMR response in electrodeposited Co-Ni/Cu multilayered nanocylinders with an ultra-large aspect ratio}, volume = {9}, year = {2022} }