@article{oai:nagasaki-u.repo.nii.ac.jp:00006008, author = {Murakami, Hiroto and Nishiide, Ryuta and Ohira, Shinji and Ogata, Akiko}, issue = {24}, journal = {Polymer}, month = {Nov}, note = {We have successfully synthesized novel polyurethanes where PU1 contains a [3]rotaxane that consists of N-3,5-di-tert-butylbenzyl-N-3-hydroxypropylammonium hexafluorophosphate (AOH1) and N,N′-Dimethyl-N,N′-bis(dibenzo-24-crown-8)-terephthalamide (BisC) as well as PU2 contains a [2]rotaxane that consists of AOH1 and dibenzo-24-crown-8 ether. Diphenylmethanediisocyanate (MDI), 1,4-butanediol (BD) and poly(ε-caprolactone)diol (PCL) were used as an isocyanate, chain expander, and soft segment, respectively. A polyurethane without any rotaxane structures (PU0) were also prepared as a reference polymer. The existence of the rotaxanes in the polyurethanes was confirmed by 1H NMR spectroscopy and TGA measurement. ATR-FT-IR spectral measurement revealed that the rotaxanes disturb the formation of hydrogen bonding between the polyurethane chains. From the DSC result, the rotaxanes retard the recrystallization of the PCL unit whereas no influence on the glass transition temperatures of the polyurethanes was observed. The retarding effect appeared remarkably with PU1. These thermal behaviors of the polyurethanes were also supported by viscoelastic measurement. In tensile test, the tensile strength and break of strain of PU1 were larger than those of PU2., Polymer, 55(24), pp.6239-6244; 2014}, pages = {6239--6244}, title = {Synthesis of MDI and PCL-diol-based polyurethanes containing [2] and [3]rotaxanes and their properties}, volume = {55}, year = {2014} }