{"created":"2023-05-15T16:29:22.695721+00:00","id":98,"links":{},"metadata":{"_buckets":{"deposit":"549d5c36-277a-4078-b328-1c54a4743cf3"},"_deposit":{"created_by":2,"id":"98","owners":[2],"pid":{"revision_id":0,"type":"depid","value":"98"},"status":"published"},"_oai":{"id":"oai:nagasaki-u.repo.nii.ac.jp:00000098","sets":["14:21"]},"author_link":["505","504","503"],"item_2_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2020-08-26","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"38","bibliographicPageEnd":"43048","bibliographicPageStart":"43042","bibliographicVolumeNumber":"12","bibliographic_titles":[{"bibliographic_title":"ACS Applied Materials & Interfaces"}]}]},"item_2_description_4":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"he conventional approach for fabricating all-solid-state batteries has required a highly dense layer of electrode and electrolyte. Their close contact interface is not suitable for alloy- or conversion-based \nactive materials because their large volume change in lithiation/delithiation reactions causes a collapse of the contact interface or reaction limitations under mechanical constriction. In this study, we propose \nthat a SnO2-embedded porous carbon electrode shows high cyclability and high capacity even at high constraint pressure owing to the nanopores, which work as a buffer space for the large volume change accompanied with SnO2-Sn conversion reaction and Sn-Li alloying-dealloying reaction. A detailed \ninvestigation between structural parameters of the electrode material and charge-discharge properties revealed Li ion conduction in carbon nanopores from a solid electrolyte located outside as well as the \noptimal conditions to yield high performance. SnO2-loading (75 wt %) in carbon nanopores, which provides the buffer space corresponding to the inevitable volume expansion by full lithiation, brought out an \nexcellent performance at room temperature superior to that in an organic liquid electrolyte system: a high capacity of 1023 mAh/g-SnO2 at 50 mA/g, high capacity retention of 97% at 300th cycle at 300 mA/g, and high rate capability with over 75% capacity retention at 1000 against 50 mA/g, whose values are also superior to the system using the organic liquid electrolyte.","subitem_description_type":"Abstract"}]},"item_2_description_63":{"attribute_name":"引用","attribute_value_mlt":[{"subitem_description":"ACS applied materials & interfaces, 12(38), pp.43042-43048; 2020","subitem_description_type":"Other"}]},"item_2_publisher_33":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"American Chemical Society"}]},"item_2_relation_12":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type":"isVersionOf","subitem_relation_type_id":{"subitem_relation_type_id_text":"10.1021/acsami.0c09792","subitem_relation_type_select":"DOI"}}]},"item_2_rights_13":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS applied materials & interfaces, copyright c American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.0c09792"}]},"item_2_source_id_7":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"19448244","subitem_source_identifier_type":"ISSN"}]},"item_2_source_id_8":{"attribute_name":"EISSN","attribute_value_mlt":[{"subitem_source_identifier":"19448252","subitem_source_identifier_type":"ISSN"}]},"item_2_version_type_16":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_ab4af688f83e57aa","subitem_version_type":"AM"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Notohara, Hiroo"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Urita, Koki"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Moriguchi, Isamu"}],"nameIdentifiers":[{}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2021-08-26"}],"displaytype":"detail","filename":"ACSAMI12_43042.pdf","filesize":[{"value":"1.7 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"ACSAMI12_43042.pdf","url":"https://nagasaki-u.repo.nii.ac.jp/record/98/files/ACSAMI12_43042.pdf"},"version_id":"f3cdda47-47ac-418d-b7e6-381669d77227"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"all-solid-state battery","subitem_subject_scheme":"Other"},{"subitem_subject":"Li ion battery","subitem_subject_scheme":"Other"},{"subitem_subject":"nanocomposite","subitem_subject_scheme":"Other"},{"subitem_subject":"nanoporous carbon","subitem_subject_scheme":"Other"},{"subitem_subject":"tin dioxide","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"SnO2-Embedded Nanoporous Carbon Electrode with a Reaction-Buffer Space for Stable All-Solid-State Li Ion Batteries","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"SnO2-Embedded Nanoporous Carbon Electrode with a Reaction-Buffer Space for Stable All-Solid-State Li Ion Batteries"}]},"item_type_id":"2","owner":"2","path":["21"],"pubdate":{"attribute_name":"公開日","attribute_value":"2020-12-16"},"publish_date":"2020-12-16","publish_status":"0","recid":"98","relation_version_is_last":true,"title":["SnO2-Embedded Nanoporous Carbon Electrode with a Reaction-Buffer Space for Stable All-Solid-State Li Ion Batteries"],"weko_creator_id":"2","weko_shared_id":2},"updated":"2023-05-15T22:59:28.001656+00:00"}