WEKO3
アイテム
Effects of mechanical repetitive load on bone quality around implants in rat maxillae
http://hdl.handle.net/10069/37950
http://hdl.handle.net/10069/37950b6d2e6f6-1805-492f-8c78-cbcb6be13656
名前 / ファイル | ライセンス | アクション |
---|---|---|
PLoS12_189893.pdf (22.0 MB)
|
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2018-02-05 | |||||
タイトル | ||||||
タイトル | Effects of mechanical repetitive load on bone quality around implants in rat maxillae | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
著者 |
Uto, Yusuke
× Uto, Yusuke× Kuroshima, Shinichiro× Nakano, Takayoshi× Ishimoto, Takuya× Inaba, Nao× Uchida, Yusuke× Sawase, Takashi |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Greater understanding and acceptance of the new concept “bone quality”, which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones. | |||||
書誌情報 |
PLOS ONE 巻 12, 号 12, p. e0189893, 発行日 2017-12-15 |
|||||
出版者 | ||||||
出版者 | Public Library of Science | |||||
EISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 19326203 | |||||
DOI | ||||||
関連タイプ | isIdenticalTo | |||||
識別子タイプ | DOI | |||||
関連識別子 | 10.1371/journal.pone.0189893 | |||||
権利 | ||||||
権利情報 | c 2017 Uto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | |||||
著者版フラグ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
引用 | ||||||
内容記述タイプ | Other | |||||
内容記述 | PLOS ONE, 12(12), e0189893; 2017 |